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Abstract. A dislocation-loop mechanism for the melting of a discotic liquid crystal is 
presented. With respect to a previous similar work, the contribution of longitudinal edge 
dislocations is included. It is explicitly shown that a discotic liquid crystal permeated by 
an equilibrium density of unbound dislocation loops behaves like a nematic liquid crystal 
in the so-called N + 6  phase. The interaction energy between parallel dislocations is 
calculated. 

1. Introduction 

Dislocations have long been proposed as a mechanism for the melting of three- 
dimensional crystalline solids into isotropic liquids [ 11. More recently, a considerable 
interest rose about the effect of defects like dislocations and disclinations on melting 
of two-dimensional solids [2]. Helfrich first tried to develop a defect model for the 
melting of smectics into nematics [3]. Nelson and Toner explicitly showed that a finite 
density of dislocations makes a solid like a fluid, and applied the model to the melting 
of smectics [4]. 

In a previous paper [SI we presented a defect model for the melting of a discotic 
liquid crystal into a nematic liquid crystal in the so-called N+6 phase [6], which is 
still a theoretical prediction and, as yet, experimentally undiscovered. The main feature 
of the model, which closely follows the Nelson-Toner theory [4], is a finite density of 
unbound dislocation loops that decorrelate the two-dimensional hexagonal lattice of 
liquid rods. (For the structure of the hexagonal discotic phase, see [7].) Dislocations 
are effective for breaking translational order but they do not destroy sixfold orientational 
symmetry. In that way the melted phase is a fluid, i.e. a phase with homogeneous 
density and without resistance to shear, but maintains a residual stiffness to torsion 
not present in an isotropic liquid. A discotic liquid crystal shows some characteristics 
of a two-dimensional system and, in particular, the presence of a crystalline lattice in 
two dimensions, but each site of this lattice is occupied by a one-dimensional nematic 
structure. So we deal with the melting of a quasi-two-dimensional system. In particular, 
beyond dislocations typical of a two-dimensional solid, like the so-called longitudinal 
edge dislocations [8], there are transversal edge and screw dislocations [ 81, in which 
the modes of distortions of the nematic director play an important role. Some analogies 
with smectics follow. In some sense the bend mode in a discotic liquid crystal 
corresponds to the splay mode in a smectic liquid crystal: the former is an undulation 
of liquid rods, the latter is an undulation of liquid layers. The condensation of the 
two-dimensional lattice in discotics is similar to the condensation of one-dimensional 
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positional order in smectics. We exploited the above-mentioned analogies in previous 
papers [9, lo], for developing a model of the phase transition between an hexagonal 
discotic phase and an intermediate nematic phase with sixfold orientational order 
( N + 6  phase), and for computing the critical behaviour of Frank elastic constants. 
The Frank energy for a discotic liquid crystal shows, beyond the ordinary elastic modes 
of distortions of the director, some terms associated with strains of the field R2, which 
describes local rotations of the lattice around the director (conventionally the axis) 
[6, lo]. We refer to [9] for a more detailed discussion of the above-mentioned model 
and, in particular, for an explanation of the reasons for assuming such an intermediate 
nematic phase in the melting of a hexagonal discotic phase. 

The proposed defect model [5] begins with the model free energy derived in [9, lo], 
which can be reduced to the case of a phase-only order parameter. The full elastic 
energy of the discotic liquid crystal so derived is analogous to the mixed elastic energy 
of smectics [ 111. We therefore applied the general theory of Nelson and Toner [4] 
and derived the dislocation part of the free energy, which, in the hydrodynamic limit, 
becomes the free energy of the N + 6 phase. From the dislocation free energy one can 
calculate the interaction energy between two transversal edge dislocations, which is 
analogous to the interaction energy between two edge dislocations in smectics. In the 
previous paper [ 51, as a first approximation, we neglected the contribution of longi- 
tudinal edge dislocations to the dislocation free energy, because their core energy is 
very large, by scaling arguments, and thus it is very hard to excite such defect lines. 

The present paper is devoted to a more general treatment of the defect model, 
which includes the contribution of longitudinal edge dislocations. We will derive the 
full dislocation free energy and will show that, in the hydrodynamic limit, it becomes 
the full free energy of the N + 6 phase, also including the terms associated with the 
torsion described by R,. These terms are absent in the previous version, because of 
neglecting longitudinal edge dislocations, and they explicitly show the presence of 
sixfold rotational order in the plane orthogonal to the director. 

We point out that, even if.the defect unbinding transition described in this paper 
is assumed to be continuous, we cannot rule out the possibility of a first-order melting 
transition. In fact, Landau theory would imply that this transition is first order, rather 
than continuous. On the other hand, at present, we are not able to provide a renormali- 
sation group calculation relative to our defect model. Therefore, we cannot state the 
existence of a stable fixed point, which would make the transition second order. Then 
we have to conclude that the transition may be first order. 

The phase-only free energy for a discotic liquid crystal is briefly reviewed in § 2. 
In 8 3 we develop the defect model, and show that a discotic liquid crystal permeated 
by an equilibrium density of unbound dislocation loops behaves like a nematic liquid 
crystal in the N + 6  phase. In § 4 we calculate some interaction energies between 
dislocations. 

2. Phase-only free energy 

'The order parameter for the condensation of the two-dimensional hexagonal lattice 
[9] is a triple mass-density wave: 
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where the reciprocal lattice vectors q, are defined in [9]. The full free energy of a 
discotic liquid crystal is [5,9,  101 

F =  F , +  F>+ F' ( 2 a )  
with 

F -- d3r[K,(div 6 m ) ' + K 2 ( m ,  * r o t  6m)'+K3(moxrot 
' - 2  

+ Y l ( a f l Z / w 2 +  72(V,flJ2+ 73(mo * rot 6"aflzlaz)l (2d )  

'I 
where R, describes the local orientation of the two-dimensional lattice, m, is the 
director parallel to the liquid rods (i axis), and 6m is a small fluctuation of m,.  

The phase-only order parameter is suitable for the ordered phase in the presence 
of dislocations, because they decorrelate only the phase of the order parameter given 
in (1). It is given by [9] 

(3) 
where v0 is the constant amplitude, and u ( r )  is the fluctuation of the local displacement 
of the lattice in the X Y  plane. Substituting (3) in (2), we obtain the phase-only free 
energy. Equation (2b) becomes a constant, which can be neglected without loss of 
generality. The elastic energy F,, (2c), by carrying out the sum over i [9], becomes 

77,(r) = 770 expr-iq, * 4 r ) l  

F 2 =  d3r  - q ~ [ V , ~ ( r ) - 6 m ( r ) ] ~  I (;$, 

where q, is defined in (7) of [9], and 

u i k  =-(-+G) 1 aui auk 
2 axk 

is the planar strain tensor of the lattice, with i, k = x, y. 
The local equilibrium values of Sm and R;, by minimising the free energy in (4), are 

6m(r )  = V,u(r) ( 6 )  

f l z ( r )  =$(rot u ( r ) ) ? .  ( 7 )  
Inserting (6) and  ( 7 )  in (4), we obtain the local equilibrium elastic energy of the lattice: 

F2 = d'r $ C U , ~  ( r )  uII, ( r )  (8) I 
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with 

Notice that, for this particular model, the shear and compression stiffnesses of the 
two-dimensional lattice are equal and given by (9). Substituting the local equilibrium 
values of 6m and R,, respectively, ( 6 )  and (7 ) ,  in the Frank elastic energy, ( 2 d ) ,  we have 

F3 = d’r $ { K , ( O ,  div U)*+ K,[V,(rot u),12+ty2[V,(rot u ) ~ ] ’  

+ K 3 [ ( d 2 ~ , / a ~ 2 ) 2  + (a’u,,/dz’)’]} (10) 

K ~ =  K ~ + : ~ , + ; ~ ~ .  (11) 

5 
with 

Equations ( 8 )  and (10) give F2+F3 as the full elastic energy of the discotic liquid 
crystal, from which we will start, in the next section, by developing the defect model. 
It is analogous to the mixed elastic energy of smectics [ 111. 

3. Melting of a discotic liquid crystal 

The following can be considered as an  application of the Nelson-Toner theory of 
dislocation-mediated melting [4] to our model of a discotic liquid crystal [9, 101. 

Dislocation lines are topological singularities in the displacement field U, charac- 
terised by a non-vanishing contour integral of U around such a line: 

d u = - b  (12) i 
which defines the Burger’s vector b, which in our case is a planar vector. The differential 
version of (12) is [4,12] 

where S ” ’ ( ~ )  is a two-dimensional 6 function of the radius vector 6 taken from the 
axis of the dislocation line in a plane orthogonal to the tangent vector T, and 

Wmk(r )  = au , ( r ) /axm (14) 

is the distortion tensor. At wavelengths long compared to the spacing between disloca- 
tion lines, we can ignore the discrete nature of dislocation lines. By averaging over a 
small volume containing many dislocations, (13) becomes 

which defines p i k ( r )  as the density of Burger’s vector carried by dislocation lines. Near 
the transition temperature the system should contain a large number of unbound 
dislocation loops of arbitrary size, and in this limit the density of dislocations p i k ( r )  
can be considered a continuous tensor field. The density of dislocations is subject to 
the constraint 

ap,k(r) /axi  = 0 (16) 
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which follows directly from ( 1 5 )  and amounts to the conservation of Burger’s vector. 
In our case, the second index of W,, and P l k  can be only x, y, since the lattice is two 
dimensional. 

Making a Fourier transform of ( 1 5 ) ,  and solving for Wfk, we obtain 

w k  (4) = i q , $ k  (9) - iEi~, ( q ,  / q2)pj1. (9) (17)  

i $ k ( q )  = q m  wmk(q)/q2 (18) 

with the definition 

where + ( q )  is a planar vector to be determined. The constraint, (16), in Fourier- 
transformed variables is 

qipik(q) = 0. (19) 

In the following we only consider the singular part of the distortion tensor Wlk, given 
by (17) ,  which is due to the presence of dislocations, and  neglect the smooth background 
phonon field, since phonon field and dislocations are decoupled in the full free energy 
[4]. Our purpose is to determine the vector + ( q ) ,  (18), as a function of the dislocation 
density P l k .  Afterwards, inserting W,, as a function of P l k  in the free energy, we will 
obtain the dislocation free energy. 

The free energy F2 + F3 in (8) and  (10) is a functional of derivatives of U. Therefore, 
exploiting the definition of Wik, (14), we obtain 

F F2+ F3 = d3r[[iC( w k  + wki)( wk + wkl) i 
+f{K1(WX,,+ ~ , , z ) 2 + ~ o ( w X , , z -  wJx,z)2+K3(w:x,z+ W’Z,,J 

+ t Y 2 [ (  w,,,, - wvx,x)2+ ( w,,,, - w, , ,  ) 2 ~ 1 > n  (20) 

with w, , ,  = a  w,k/axJ. For a given configuration of dislocation lines, WIL(r )  must 
minimise the free energy (20). Exploiting the variational equation 

we obtain 

3 d 1 d  
[dx  2 dy c - W,,+-- (W, , ,+  W,X) 

and a n  analogous equation by interchanging x with y. In  Fourier space, the elastic 
free energy, (20), becomes 

F = 
d’q 
- [ C ( 1  W,, I + I W,,, I ’ + W,, + W,,, 1 ) + K ,  qsl W,, + W, , 1 ’ 2 (2?r)3 
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where qi is the projection of q in the X Y  plane, and the equilibrium equation (22) is 

- c [ s \w\ ,+~s l (wY,  + W \ \ ) l  

= K,q\q:(WY,+ w, , )+q , (K , ,q~+i . : y ,q : ) (W, . ; -  w,,)+K,q;W:, (24)  

and an analogous equation is obtained by interchanging x with y.  
In our model there are eight variables: p2\ and p:, which are densities of longitudinal 

edge dislocations [8], pY, and ply which are densities of transversal edge dislocations 
[8], pvy and p , ,  which are densities of screw dislocations [8], $, and $\ defined in 
(18) as the part of W,, longitudinal to the wavevector 9. These variables are constrained 
by four equations: the Burger’s vector conservation (19) which amounts to two 
equations, and  the two equilibrium equations, of which one is (24). Therefore we 
can express the free energy as a functional of four independent components of the 
tensor p,,. 

We explicitly write the constraint, (19), as 

4 . Y  4), 
42 4- 

P Z Y  = - - P.;,r - - P.V., 

4.r 4, 
4: 4- 

PY = - - P.Yy - - P??. * 

The components of (17) are 

and the definition of 4, (18), is 

1 
4-  

i $, = -i (q\ W,, + 4 ,  W,  + 4 ,  W,, 1 

NOW it is a matter of algebra, tedious and very long to be carried out but straightforward. 
We have to solve the equilibrium equations (24) and its analogues for W,, and W,, ,  
and insert them in ( 2 7 ) .  Then we substitute (26a -d )  in (27), and also exploiting (251, 
we obtain $, and $, as functions of p\.;, p , , ,  p, ,  and p, , ,  which are taken as the four 
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independent dislocation densities. Such expressions of 4, and 4, ,  and the following 
expressions of Wjkr are very cumbersome and  not interesting enough to report here. 
We directly write the quadratic invariant combinations of W,, in  terms of which the 
free energy, (23 ) ,  is given: 

with 

i, k = x, y q i q k  p.  =- i k  s: 
Tr P = P x x  + P.vy 

Tr PP = 7- [ 4 2 x P x x  + 4:PY.Y + 9 X 9 . " ( P X > '  + PW)l 

Tr EPP = 1 9tP>'x - 9iP.Y, + 4. \ .4> ' (P .Y.Y - P>j? 11 

Tr E P  = Pyx - Px,. 

(33 )  

(34 )  

(35 )  

( 3 6 )  

1 
41 

1 

q L  

E being the antisymmetric unit tensor in two dimensions with E,? = - E ~ , ~  = 1,  E , , ~  = E?:,. = 
0. We observe that (33) - (36)  are the only independent invariants linear in pik that can 
be built with Pik and q l .  

Substituting (28) - (31)  in (23) ,  the free energy becomes 

F D  = F D ,  + FD2 ( 3 7 0 )  

with 

FDI =' J" ~ [qtq:(K,q:+ KiqIq:+ c~:)I-'[K,~;(K~~x+ cq:)~Tr E p 1 2  
d3 4 

2 ( 2 T ) 3  

+ Cq:[2(K3q:+ K,qiq:)+ Cq:]l Tr ~Ppl' 

- K3qtCq:(Tr EPP Tr  ~ p * + c c ) ]  ( 3 7 b )  
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which is the ( K O ,  7,)-controlled term. Equations ( 3 7 )  give the dislocation part of the 
free energy for a discotic liquid crystal. Now we have to add the phenomenological 
core energy [4] E, of screw dislocations, E, of transversal edge dislocations and E, 
of longitudinal edge dislocations. As usual, we have 

F C O K  =- - d 3 q 3  [2Es(lp,,l*+Ip,,1*)+2Ee(lp,,l2+lp,,12)+2Eo(jpzxj*+ I ~ ~ \ I * ) I *  ( 3 8 )  
2 (2.ir) 

By scaling arguments, similar to that employed by Nelson and Toner [4], we have (see 
also [5]) 

Es - Ee - 511 
Eo- $‘5: ( 3 9 6 )  

( 3 9 0 )  

where .& and [I are the correlation lengths, respectively, parallel and orthogonal to 
the director. Therefore we can put E,= Ec= E,, in the renormalised sense, and ( 3 8 )  
becomes 

(40) 
d3q 

Fcore = j [2~c( lprx1* +  pi, 1 2  + I ~ Y ,  / 2 +  1 p > x 1 2 )  + 2~o(tpzr12 + / P z i  1211 

which is given in terms of quadratic invariant combinations of p,h. Expressing pZx and 
pz, with (25), and using the same quadratic invariants in terms of which F,, ( 3 7 ) ,  is 
given, the core free energy of dislocations can be written as 

Adding Fco,,, (41), to F,, ( 3 7 ) ,  we obtain the full dislocation free energy for a 
discotic liquid crystal. Such a free energy can be reduced to the free energy of the 
N +6 phase [6, lo], at long enough wavelengths [4]. In fact we take the hydrodynamic 
limit q + 0, or A q  << 1, of the full dislocation free energy, where A is defined as 

with K any one of the Frank constants K ,  , K O ,  K, ,  y z .  
It is tedious but straightforward to evaluate correlation functions of Sm,, Sm, and 

R z  in the presence of continuous density of dislocations, making use of (28), ( 3 0 ) ,  
( 3 7 ) ,  (41), and exploiting also ( 6 )  and ( 7 ) ,  and the definition of W,k, (14), which imply 
W,, = 6m,, W,, = Sm,, and 1 W,, - W,,l= 2 a 2 .  In  the hydrodynamic limit, and in the 
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approximation Eo >> E ,  >> K ,  which follows from scaling arguments [ 5 ] ,  one finds that 
the fluctuations are described by 

+(4K;q:+ y:q l ) ln ,12-2E,qZ[(q ,Sm~ - q,6m:)RZ +cc]> 

yS= y2+2E, (44) 

K ; =  K,+;E,. (45) 

(43) 

with 

Equation (43) is the free energy of the N + 6 phase, with K ,  = K 2  = 2E,  and y3  = -2E,. 
The dislocation melted phase is actually a N + 6 phase, as the nZ terms in (43) explicitly 
shows, and  having lost any stiffness to shear is a liquid. In particular, note that (43) 
is just like ( 2 d ) ,  and therefore has the symmetry of the free energy of the N $ 6  phase 
[6, lo], whose elastic terms represent the residual sitffness to torsion. If one does not 
take the E,  >> E,  >> K ,  limit, one gets more complex expressions of the various elastic 
constants in terms of the dislocation parameters, which are not very interesting to be 
reported here. Anyway, the free energy has still the form of ( 2 d ) ,  as is even clear 
on symmetry grounds. So we have shown that a discotic liquid crystal with a finite 
density of unbound dislocation loops does indeed behave like a mematic liquid crystal 
in the N + 6  phase. 

We observe that K ,  = K 2  = 2E,  and (39a)  give 

K ,  - K2 - 511 

Y2 - si’s:. (47) 

(46) 

while (44) and  (39b) give the critical enhancement of y z :  

Equations (46) and  (47) are in accordance with the critical behaviour of Frankconstants, 
derived in [9,10] on the basis of mean-field theory. 

At last, we have to comment on the character of the defect unbinding transition, 
which has been assumed second order. Actually, according to Landau theory, the 
transition is predicted to be first order, because of the cubic term in ( 2 6 ) .  Renormalisa- 
tion group calculation applied to our defect model is not, at present, available, so that 
we cannot conclude in favour of the existence of a stable fixed point. Therefore, we 
point out that the transition may be first order. 

4. Interaction energies between dislocations 

The dislocation free energy F, ,  (37), can be considered as the interaction energy 
between dislocations, which are described by the continuous density pik .  Let FD be 
written as 

where U,,,, is a pair interaction energy [13]. As a particular case, we can consider 
only two dislocations in the bulk, in order to calculate their coupling energy. The 
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interaction energy for unit length between two transversal edge dislocations parallel, 
e.g., to the y* axis is therefore (see also [13]) 

--cc 

where a is the spacing of the lattice. From the examination of (37) and  taking account 
of the expressions of the invariants in (33)-(36), one can get U , , , , , ( q ) .  The result is 

-‘x 

which is the same as (44) of [5]. For large z compared to A I  = ( K , / C ) ” 2  (A,q,<< l ) ,  
we have [5] 

t c r  

--03 

which is analogous to the interaction energy between edge dislocations in smectics, 
by interchanging x with z. Therefore, following the arguments of Nelson and Toner 
about anisotropic scaling [4], one should argue that 6, - Si, which would give Y- = 229, 
as in [5]. Nevertheless, those arguments themselves are known to be untrustworthy 
[ 141, while other more reliable theoretical approaches give isotropic scaling for smectics 
[14]. As regards our model of discotics, in the absence of an  understanding of the 
renormalisation group fixed point, we cannot make any definite statement about the 
ratio vi, /  Y,. 

In a similar way we can calculate the interaction energy for unit length between 
two screw dislocations parallel, e.g., to the 2 axis, which is 

f c r  

-X 

and then 

-02 

The interaction energy between a screw and  a transversal edge dislocation, mutually 
parallel, vanishes, since, e.g., 

[ U,W,,,lY, = o =  0. (54) 

Analogously, in a three-dimensional solid, a screw and an edge dislocation, mutually 
parallel, are not coupled. 

Finally, it is interesting to calculate the coupling between two longitudinal edge 
dislocations, which are solid-like dislocations. For this purpose we have to take p2,, 
pzy, pyx, pxy, as independent densities, by solving (25) with respect to pxx and p,,., and 
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substituting them in (37).  We obtain, for the interaction energy for unit length between 
two longitudinal edge dislocations, with both Burger’s vectors along the 2 axis, 

+a? 

-a 

which, by performing the integral, becomes 

Ca ’ 
4n 2n r4 

y2a2  y 2  - x2 
Uoo(x, y)=-(-In r + x 2 / r 2 ) + -  ___ 

with r = (x2+ y2)”’. 
Note that the first term in (56) is the ordinary interaction between two dislocations 

in a two-dimensional solid, due to first-order elastic constants. The second term in 
(56), on the other hand, corresponds to the contribution of second-order elastic 
constants, just like the torsion constant y 2 ,  and should be present in a solid as well, 
if higher-order elastic constants were included in elastic theory of dislocations. 
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